# Cannabinoid system in the skin – a possible target for future therapies in dermatology

Piotr Kupczyk<sup>1</sup>, Adam Reich<sup>2</sup> and Jacek C. Szepietowski<sup>1,2</sup>

<sup>1</sup>Department of Clinical Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland;

<sup>2</sup>Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Wroclaw, Poland

*Correspondence*: Prof. Jacek C. Szepietowski, MD, PhD, Department of Dermatology, Venereology and Allergology, Wrocław Medical University, Ul. T. Chalubinskiego 1, 50-368 Wrocław, Poland, Tel.: +48-71-7842288, Fax: +48-71-3270942, e-mail: jszepiet@derm.am.wroc.pl

Accepted for publication 26 May 2009

**Abstract:** Cannabinoids and their derivatives are group of more than 60 biologically active chemical agents, which have been used in natural medicine for centuries. The major agent of exogenous cannabinoids is  $\Delta^9$ -tetrahydrocannabinol ( $\Delta^9$ -THC), natural psychoactive ingredient of marijuana. However, psychoactive properties of these substances limited their use as approved medicines. Recent discoveries of endogenous cannabinoids (e.g. arachidonoylethanolamide, 2-arachidonoylglycerol or palmithyloethanolamide) and their receptors initiated discussion on the role of cannabinoid system in physiological conditions as well as in various diseases. Based on the current knowledge, it could be stated that cannabinoids are important mediators in the skin, however their role have not been well elucidated yet. In our review, we summarized the current knowledge about the significant role of the cannabinoid system in the cutaneous physiology and pathology, pointing out possible future therapeutic targets.

**Key words:** cannabinoid receptors – drug development – endocannabinoids – keratinocytes – skin

Please cite this paper as: Cannabinoid system in the skin - a possible target for future therapies in dermatology. Experimental Dermatology 2009; 18: 669-679.

### Introduction

Narcotic and therapeutic properties of cannabis derivates have been known for centuries, and marijuana has remained as one of the most widely used drugs worldwide (1). However, the exact mechanism of marijuana action was unknown until the discovery of cannabinoid receptors (CBRs) at the end of twentieth century. The identification of endogenous ligands of CBRs (so called endocannabi-

Abbreviations: AEA, arachidonoylethanolamide (anandamide); 2-AG, 2-arachidonoylglycerol; AMT, AEA membrane transporter; cAMP, cyclic adenosine monophosphate; CBRs, cannabinoid receptors; CB<sub>1</sub>R, cannabinoid receptor 1; CB<sub>2</sub>R, cannabinoid receptor 2; EGF-R, epidermal growth factor receptor; FAAH, fatty acid amide hydrolase; CGRP, calcitonine gene-related peptide; GPR, G-protein-coupled receptor; HaCaT, spontaneously immortalized human keratinocytes; HMVEC, human dermal microvascular endothelial cells; KSHV, Kaposi's sarcomaassociated herpes virus; MAP kinase, mitogen-activated protein kinase; NHEK, normal human epidermal keratinocytes; PEA, N-palmithylethanolamide; PKA, protein kinase A; PPAR, peroxisome-proliferators-activated receptor;  $\Delta^9$ -THC,  $\Delta^9$ -tetrahydrocannabinol; TRPV-1, transient receptor potential vanilloid-1. noids) initiated a rapid progress in the understanding of the role of the cannabinoid system in physiological and pathological processes in human beings. Recently, CBRs have also been demonstrated to be expressed in healthy and diseased skin (2), suggesting that the alteration of the cannabinoid system could be important for the development of numerous skin diseases. Therefore, we performed a review of available literature data to summarize current knowledge about the cannabinoid system in the skin pathophysiology pointing out possible future therapy targets.

### **Endocannabinoids receptors**

Two receptor types for endocannabinoids have been identified till now beyond all doubts: CB<sub>1</sub>R (cannabinoid receptor 1) and CB<sub>2</sub>R (cannabinoid receptor 2) (3). Both receptors belong to the large superfamily of G-proteincoupled receptors (GPRs) with the primary structure characterized by seven hydrophobic  $\alpha$ -transmembrane domains (each consisting of about 20–25 amino acids), which are connected by alternating intra- and extra-cellular loops. A typical feature of GPRs, which is also found in CBRs, is their ability to form intramolecular disulfide bridges between cysteins in the second and third domain, which stabilize a tertiary structure of receptors (3). Another

#### Kupczyk et al.

common characteristic is a highly conservative fragment without proline in the fifth hydrophobic domain. In addition, extra-cellular N-terminus contains three sites of glycosylation, but their function is still to be elucidated (3–7).

Cannabinoid receptor 1 is predominantly expressed in central nervous system and in tissues and cells of immune system. CB<sub>2</sub>R has been found mainly in non-neuronal tissues (5,8–10). CB<sub>1</sub>R and CB<sub>2</sub>R have been characterized and cloned from mammalian tissues at the beginning of 1990s (6). The mRNA sequences encoding CB<sub>1</sub>R and CB<sub>2</sub>R have been defined for vertebrates including human, mouse, rat, cat, cow, newt, puffer fish and zebra fish, as well as for non-vertebrate such as leech. The amino acid sequence of CBR subfamily is a conservative one. The human amino acid sequence of CB<sub>1</sub>R and CB<sub>2</sub>R and CB<sub>2</sub>R is identical in more than 40% (1,11).

Interestingly, recent trials on endocannabinoids indicated the possibility of existence of  $CB_1R/CB_2R$ -independent mechanisms of action. Experiments with double  $CB_1R^{-/-}$ and  $CB_2R^{-/-}$  knockout mouse suggested the presence of the  $CB_3$  receptor, which still has to be cloned and characterized (12). Moreover, it was shown that receptors belonging to peroxisome-proliferators-activated receptor (PPAR) family as well as a transient receptor potential vanilloid-1 (TRPV-1) could be also activated by cannabinoids (see below) (3,4,12,13). Remarkably, recently some authors even observed that endocannabinoids can simultaneously activate various receptors on the same cell [e.g.  $CB_1R$  and TRPV-1 (14) or CB1R, TRPV1 and PPAR- $\gamma$  (15)], and only interaction with all these receptors produced the full action of endocannabinoids.

### Cannabinoid receptor type 1 (CB<sub>1</sub>R)

The gene encoding CB<sub>1</sub>R is localized on chromosome 6 (6q14-q15) (16). The CB<sub>1</sub>R gene is intronless and very conservative one with similar sequence in humans, rats and mice (3,17). Its mRNA has been detected in embryonic mouse, as soon as at 11th day of mouse gestation. Postnatal expression of this receptor has mainly been detected in the brain and spinal cord (18). The highest density of CB<sub>1</sub>R has been showed in basal ganglia, substantia nigra, pars reticulata, globus pallidus, hippocampus, particularly within the dentate gyrus, as well as in the molecular layer of the cerebellum (19). The expression of CB<sub>1</sub>R in central nervous system correlates with the level of  $\gamma$ -aminobutyric acid and glutamate-gated ion channels (20). CB<sub>1</sub>R has been demonstrated to be localized presynaptically on GABA-ergic and glutamatergic interneurons (21), which may indicate a role of CB1R in neuromodulation of signal transmission (7,17,22). Two splice variants of CB<sub>1</sub>R have been identified: CB1AR with altered terminal sequence and CB1BR with deletion of 33 amino acid sequence in N-terminus, but their role is still not known (23). CB<sub>1</sub>R expression have been detected

not only in central nervous system, but also in peripheral organs, including heart, lungs, gastrointestinal tract, liver, adrenal glands, bladder, placenta, uterus, ovaries, testes, spermatic duct, skin and adipose tissue (19,24,25).

### Cannabinoid receptor type 2 (CB<sub>2</sub> R)

The CB<sub>2</sub>R gene is localized on chromosome 1 (1p36,11) (26). CB<sub>2</sub>R mRNA has been detected during both, pre and postnatal live (18). CB<sub>2</sub>R expression is typical for tissues associated with immune system and, for that reason, this receptor has been called as *immunocannabinoid system receptor* (7,8,17,27). CB<sub>2</sub>R has been detected on B and T lymphocytes, NK cells, monocytes and in immune organs such as spleen, tonsils and thymus (8). Although recent studies suggested its presence in the brain and on peripheral nervous system, till now CB<sub>2</sub>R in this location was mainly documented in neoplasms (28).

### Non-CB<sub>1</sub>/CB<sub>2</sub> receptors activated by cannabinoids

It was observed that cannabinoids can activate numerous other receptors. GPR-55 and GPR-119 are two putative co-receptors, which could interact with cannabinoid ligands and activate non-CB<sub>1</sub>R/CB<sub>2</sub>R mechanisms. GPR-55 has been reported to be activated by various cannabinoids, while GPR-119 is a receptor for oleoylethanolamide. The role of these receptors is not known. Data originating from the study on transgenic GPR-55<sup>-/-</sup> mouse indicated that GPR-55 could be important in cardiovascular system, inflammation and pain (29,30).

Another target for cannabinoids could be the TRPV-1, a ligand-gated, non-selective ion channel (31,32). Expression of TRPV-1 has been affirmed in some types of central neurons, perivascular sensory nerves, immune cells such as macrophages, dendritic or Langerhans cells, endothelial and epithelial cells, epidermal and hair follicle keratinocytes as well as in smooth muscle cells (33,34). TRPV-1 can be activated by numerous inflammatory mediators and chemicals including capsaicin and endocannabinoids (14). Activation of TRPV-1 is regulated by phosphokinases, such as protein kinase A (PKA), protein kinase C and calcium/calmodulin dependent kinase IIa; dephosphorylation, and deactivation of this receptor starts with activation of protein phosphatase 2B (calcineurin) (35). Activation of TRPV-1 by anandamide induces vasodilatation, calcitonine gene-related peptide (CGRP) release and nitric oxide (NO) synthesis, inhibits L-type calcium channels and intracellular calcium mobilization as well as decreases production of cyclic adenosine monophosphate (cAMP) (14,36,37). It was shown that CB<sub>1</sub>R and TRPV-1 are co-localized on sensory neurons in the skin (38).

Peroxisome-proliferators-activated receptors are the next putative collaborators in cannabinoid system. PPARs play

important role in regulation of lipid metabolism, hepatic peroxisomal enzyme expression, insulin sensitivity, glucose metabolism and inflammation (39,40). Natural PPAR agonists include fatty acids and eicosanoid derivates (39,40). Recently, endocannabinoids have also been found to directly activate PPAR- $\alpha$  and PPAR- $\gamma$  (40–42).

Although all these non-CB<sub>1</sub>/CB<sub>2</sub> receptors could be activated by cannabinoids, it seems that cannabinoids are not the major group of their ligands. Therefore, in the next paragraphs, we have mostly been concentrated on two major CBRs: CB<sub>1</sub>R and CB<sub>2</sub>R.

### Signal transduction via CBRs

Signal transduction via CBRs is based on G-protein complex. G-proteins belong to a big family of signalling molecules consisting of three subunits ( $\alpha$ ,  $\beta$  and  $\gamma$ ) and possessing GTP-ase activity. CB<sub>1</sub>R is coupled with G<sub>o</sub> and G<sub>i</sub>, whereas CB<sub>2</sub>R only with G<sub>o</sub> protein. The signal transduction via CB<sub>1</sub>R and CB<sub>2</sub>R can be inhibited by bacterial toxins: cholera toxin or pertussis toxin that induces covalent ADP-rybosylation of specific G-protein  $\alpha$ -subunits of G<sub>i</sub> family (43).

The signal transduction in immunocannabinoid system is not completely clear, as it depends on the cell type studied. Figure 1 depicted the probable mode of endocannabinoid action in immune cells, mainly T lymphocytes, upon CBR stimulation based on available literature data. It is generally accepted that activation of CBRs induces exchange of GDP to GTP in  $\alpha$  subunit and subsequent dissociation of  $\alpha$  and  $\beta\gamma$  subunits (12,17,44). This leads to the inhibition of adenylate cyclase that results in reduction in intracellular cAMP level; however, the magnitude of this effect could be dependent on particular cellular isoform of adenylate cyclase (7,17). Diminished cAMP level intracellularly suppresses activity of PKA and induces changes in ion distribution via interaction of dissociated  $\beta\gamma$  subunit with respective ion channels leading to increased cytosolic calcium ion concentration (45,46). As a final consequence, translocation of critical transcriptional factors such as NF-AT, NF-kB, CREB/ATF into nucleus is inhibited that change the gene expression of a number of interleukins, chemokines and growth factors, e.g. interleukin 2, interleukin 8 or interferon  $\gamma$  (47,48) (Fig. 1).

Changes in calcium ion distribution upon CBR stimulation may also activate phospholipase C, which via secondary messengers lead to activation of the family of multifunctional mitogen-activated protein (MAP) kinases, such as p44/42 MAP kinase, JUN-terminal kinase and p38 MAP kinase (7,17). Finally, this enables the action of AP-1 transcriptional factor (Fig. 1).

It seems probable that individual elements of cannabinnoid signal transduction pathway in immune cells may be more or less pronounced in various physiological and pathological situations depending upon co-stimulatory effect of other signals that are received by cells.

### Ligands of CBRs

Cannabinoids are a group of more than 60 biologically active chemical agents which are synthesized by animals (endocannabinoids), produced by plants (e.g. *Cannabis sativa*) (phytocannabinoids) or developed artificially in laboratories (synthetic cannabinoids) (1–4,49).

Arachidonoylethanolamide (anandamide or AEA), 2-arachidonoylglycerol (2-AG), virodhamine, N-arachidonoyldopamine, arachidonyl-2'-chloroethylamide or N-palmitoylethanolamide (PEA) represent a group of endocannabinoids that include amides or esters of long chain polyunsaturated fatty acids (Fig. 2) (50-54). Generally, they have been categorized to neuromodulatory agents, but they have some peculiar features distinguishing them from typical neurotransmiters. They are synthesized in place of their action upon demand by receptor-stimulated cleavage of membrane lipid precursors and are not preserved in synaptic vesicles. Endothelial cells and resident macrophages are probably main source of AEA outside the central nervous system (55). Lipophilic nature of endocannabinoids allows them to activate enzymes in cytosol and transmembrane compartments, where they can interact with lipoprotein structures (5,7,17,18).

Phytocannabinoids are group of agents similar to terpenophenols with lipophilic properties. The major exogenous cannabinoid is  $\Delta^9$ -tetrahydrocannabinol ( $\Delta^9$ -THC), a natural psychoactive ingredient of marijuana (49). Most synthetic cannabinoids are derivatives of  $\Delta^9$ -THC. CP-55940, frequently labelled with tritium ([<sup>3</sup>H]-CP-55940), and WIN-55,212-2 belong to the most known representatives of synthetic CBR agonists and have been used to detect CB<sub>1</sub>R and CB<sub>2</sub>R expression (49,56,57).

# Biosynthesis and regulation of endocannabinoids

Synthesis of endocannabinoids is controlled by a specific class of enzymes that maintain physiological levels of this molecule. AEA, the most extensively studied endocannabinoid, is synthesized in a two-step enzymatic pathway: the first step of AEA synthesis involves calcium-dependent transacyclase, which catalyses formation of N-acyl phosphatidylethanolamines from phosphatidylocholine and phosphatidylethanoloamine followed by hydrolysis by phospholipase D to AEA and related fatty acid amides (58,59). The level of AEA is controlled by AEA membrane transporter (AMT) that removes AEA from extra-cellular space and fatty acid amide hydrolase (FAAH), which participates

Kupczyk et al.



**Figure 1.** The theoretical model of signal transduction via cannabinoid receptors in T-cells: activation of CBRs induces exchange of GDP to GTP in  $\alpha$  subunit and subsequent dissociation of  $\alpha$  and  $\beta\gamma$  subunits leading to inhibition of adenylate cyclase that results in reduction of intracellular cAMP level. Diminished cAMP level intracellularly suppresses activity of PKA and induces changes in ion distribution via interaction of dissociated  $\beta\gamma$  subunit with respective ion channels leading to increased cytosolic calcium ion concentration. As a final consequence, translocation of critical transcriptional factors such as NF-AT, NF- $\kappa$ B, CREB/ATF into nucleus is inhibited. Changes in calcium ion distribution upon CBR stimulation also activate phospholipase C, that via secondary messengers lead to activation of the family of multifunctional mitogen-activated protein (MAP) kinases, such as p44/42 MAP kinase, JUN-terminal kinase and p38 MAP kinase (7,17). Finally, this enables the action of AP-1 transcriptional factor. (AEA, anandamide; 2-AG, 2-arachidonoylglycerol; ATP, adenosine triphosphate; Ca<sup>2+</sup>, calcium ionsl; CaM, calmodulin; cAMP, cyclic adenosine monophosphate; CB<sub>1</sub>R, cannabinoid receptor 1; CB<sub>2</sub>R, cannabinoid receptor 2; cNOS, cytoplasmic NO synthase; DG, diacylglycerol; GDP, adenosine diphosphate; GTP, adenosine triphosphate; I $\kappa$ B, cytoplasmatic inhibitor of NF $\kappa$ B; IP<sub>3</sub>, inositol trisphosphate; MAPK, mitogen-activated protein kinase; MAPKKK, mitogen-activated protein kinase A; PKC, protein kinase C; PLC, phospholipase C, arrows, stimulatory effect; dotted line, inhibitory effect; red crosses, actions inhibited by cannabinoids).

in intracellular AEA degradation (60,61). The mouse lacking FAAH enzyme show up to 15-fold higher endogenous brain levels of AEA comparing to a wild-type (FAAH<sup>+/+</sup>) mouse (62).

Biosynthesis and enzymatic regulation of 2-AG are still not fully characterized and probably depends on the type of tissues and cells and the type of stimulus (3). One of the most common mentioned pathways for 2-AG synthesis is involvement of phospholipase C and diacylglyccerol lipase that synthesize 2-AG from phospholipid precursors. Monoacylglycerol lipase appears to play the predominant role in 2-AG degradation as a selective blockade of this enzyme produced a number of CB<sub>1</sub>R-dependent behavioural effects in mouse including analgesia, hypothermia and hypomotility (63,64).

Besides regulatory effect of enzymes degrading endocannabinoids, their action may be modulated by other mediators as it was observed that bradykinin or prostaglanding  $E_2$  augmented excitatory potency and efficacy of AEA on TRPV-1 in sensory neurons (65).

## Cannabinoids in the skin – physiological conditions

The distribution and expression of  $CB_1R$  was uniformly found in skin biopsies taken from different body sites (2).



Arachidonoylethanolamide (anandamide or AEA)



Arachidonoylglycerol (2-AG)





N-Palmithoylethanolamide (PEA)



N-arachidonoyl-dopamine (NADA)



O-arachidonoylethanolamine (virodhamine)

Figure 2. Chemical structures of selected endocannabinoids found in humans.

In the skin,  $CB_1R$  was predominantly observed to be expressed on cutaneous nerves (e.g. on large myelinated nerve fibres in the papillary dermis, on small nerve fibres

associated with hair follicles and, sporadically, on the nerve fibres in the epidermis) (2). Remarkably, CB<sub>1</sub>R-positive sensory nerve fibres also showed co-expression of CGRP (2). In addition, CB<sub>1</sub>R immunoreactivity was observed on keratinocytes in the stratum spinosum and stratum granulosum, and on differentiated epithelial cells of infundibulum and the inner hair root sheet in hair follicles (2). CB<sub>1</sub>R has also been found on a portion of CD68-positive macrophages and on all dermal mast cells (2). Furthermore, Maccaroni et al. (66) observed that spontaneously immortalized human keratinocytes (HaCaT) and normal human epidermal keratinocytes (NHEK) have the biochemical machinery to synthesize, bind and metabolize AEA, as they observed expression of CB1R, AMT, FAAH and an AEA-synthesizing N-acyl phosphatidylethanolamine phospholipase D in these cells.

 $CB_2R$  has been found in the skin on large myelinated nerve fibre bundles of the superficial and deep reticular dermis, small unmyelinated nerves of the papillary dermis and occasionally on nerves of the epidermis (2). In the epidermis, immunoreactivity for  $CB_2R$  has been mainly noted in basal layer. In contrast to  $CB_1R$ ,  $CB_2R$  expression was detected in undifferentiated cells of the infundibulum, in the outer hair root sheet and in the bulb of hair follicle, suggesting that both receptors play different role during differentiation of keratinocytes. Positive immunoreactivity for  $CB_2R$  showed also mast cells and CD68positive macrophages (2). The expression of  $CB_1R$  and  $CB_2R$  in normal human skin was also reported by other authors (67).

Cannabinoids may exert various effects in the normal skin. It seems that endocannabinoids could be involved in differentiation of keratinocytes. It was observed that in HaCaT and NHEK cells which were stimulated to differentiate exogenous application of AEA inhibited the formation of cornified envelopes, a hallmark of keratinocyte differentiation (66). Interestingly, the activity of AMT and the activity and expression of FAAH increased while the endogenous levels of AEA decreased in HaCaT and NHEK cells that were induced to differentiate in vitro (66). It was also shown that AEA downregulates the transcription of genes encoding keratin 1 and 10, transglutaminase 5 and involucrin (68). Other endocannabinoids, including 2-AG, N-arachidonoyl-dopamine and arachidonyl-2'-chloroethylamide, demonstrated similar activity, whereas CB<sub>1</sub>R antagonist, SR141716, inhibited the effect of AEA (68). This mechanism seems to be mediated by increasing DNA methylation in human keratinocytes through a p38 MAP kinase, and to a lesser extent p42/44 MAP kinase-dependent pathway triggered by CB<sub>1</sub>R (68). Two inhibitors: SB203580 for p38 MAP kinase and PD98059 for p42/44 MAP kinase abolished the effect of AEA on HaCaT cells (68). These observations might suggest that AEA is rather important in sustaining proliferative phase of cell growth, partaking for instance in early stages of wound healing. We could speculate that blockade of AEA synthesis would promote differentiation of epidermal malignancies. On the other hand, Wilkinson and Williamson (69) found that phytocannabinoids inhibited keratinocyte proliferation in a concentration-dependent manner, although these authors postulated that this phenomenon may be CB<sub>1</sub>R/CB<sub>2</sub>R independent.

### Cannabinoids in immune system

Current evidence about the role of cannabinoids in the regulation of immune system is unquestionable, and even a term 'immunocannabinoid system' has been introduced (8). First reports about the role of cannabinoid system in immune modulations started in the 1970s (70). Expression of both, CB1R and CB2R, has been documented in various immune cells and tissues, although it was shown that CB<sub>2</sub>Rs exhibited 10- to 100-fold greater reactivity in immune system than CB<sub>1</sub>Rs (71). Therefore, CB<sub>2</sub>R is thought to be the principal component of immunocannabinoid system (8). The CB<sub>2</sub>Rs are expressed by monocytes/ macrophages, NK cells, neutrophils and B and T-cells (8,72). Activation of CB<sub>2</sub>R usually led to the suppression of immune response (73). In vitro studies using mouse cell cultures demonstrated immunosuppressive action of  $\Delta^9$ -THC, especially on proliferating splenocytes and B-cells but also on macrophages (74). Macrophage function could be regulated by  $\Delta^9$ -THC on multiple levels, e.g. by down-regulating macrophage-associated cytolysis of tumor cells or decreasing expression of selected proteins released by macrophages which are required for signalling between immune cells (74-76). The cannabinoid system is involved in the regulation of homeostasis between humoral and cellular response ( $T_{H1}$  and  $T_{H2}$ -dependent) (8,22,77). In experiments with mitogen such as LPS, additional application of AEA or 2-AG suppressed B-cell and splenocyte proliferation response (74). Cannabinoids were also more suppressive for T<sub>H1</sub> than for T<sub>H2</sub>-dependent reaction and possessed some anti-inflammatory properties (77). The suppressive effect is mainly directed on activated immune cells (77). It was shown that production of numerous proinflammatory cytokines (TNF-a, IL-12, IL-1, IL-6, IL-10) or chemokines (CCL2, CCL5, CXCL8, CXCL10) by activated immune cells could be down-regulated by application of cannabinoids (36,78,79). Immunomodulatory effect of cannabinoids may also be manifested in expression changes of adhesion molecules, such as ICAM-1 or CD62P. Endocannabinoids inhibit T-cell, macrophage and NK-cell activity, as e.g. 2-AG reduced expression of IL-2 gene in murine T-cells, inhibited production of IL-6 in J774 macrophagelike cells and diminished TNF- $\alpha$  synthesis in lypopolisaccharyde stimulated mouse macrophages. Furthermore, endocannabinoids induced migration of human NK and KHYG-1 (a natural killer leukaemia cells) cells (7,77,80) as well as suppressed dose- and time-dependently cytotoxic activity of NK-cells and lymphokine-activated killer cells (70,74). Endocannabinoids also inhibited NO production in macrophages induced by lipopolysaccharide (81). In addition, anandamide-activated lymphocytes showed intensive production of lymphotoxins: different cytokines, eicosanoids, quinolinates and NO (8,74). In another study, a selective activation of CB<sub>2</sub>R induced apoptosis of thymocytes in vitro and inhibited the proliferative response of T- and B-cells to mitogens through induction of apoptosis (82). This phenomenon involved caspase-8, caspase-9 and caspase-3 activation as well as loss of mitochondrial membrane potential (83). In addition, thymus atrophy, apoptosis and decreased peripheral T-cell response to mitogens was noted in vivo (84).

Cannabinoids can modulate IL-2 and TNF- $\alpha$  gene expression as well. Experiments with herpes simplex virus infected mouse revealed a suppressive effect of cannabinoids on IL-2 and TNF- $\alpha$  production. TNF- $\alpha$  secretion was modulated by  $\Delta^9$ -THC due to inhibition of conversion of pre-TNF- $\alpha$  to an active peptide. Similarly, 2-AG inhibited production of IL-2 in activated T-cells (85). Interestingly, Namazi (86) suggested involvement of cannabinoid system in immune modulation in psoriasis by inhibitory effect on IL-2 and TNF- $\alpha$  release and NO production.

It is also worth to mention that impairment of the cannabinoid system may be important for the development of autoimmune diseases. Analysing  $CB_2R$  gene polymorphism, Sipe et al. (77) found that  $CB_2R$  188-189 GG/GG homozygotes characterize by about twofold reduction of endocannabinoid-induced inhibition of T-cell proliferation compared with  $CB_2R$  188-189 AA/AA homozygotes. It was also observed that patients with autoimmune diseases, including also subjects with systemic lupus erythematosus and rheumatoid arthritis had increased prevalence of the homozygous  $CB_2R$  GG/GG genotype (77).

# Cannabinoid system as a possible target for future therapy in skin disease

### Inflammatory skin diseases

As mentioned above, cannabinoids seem to have immunosuppressive properties and could be considered as potential anti-inflammatory drugs. Recently, Karsak et al. (87) reported that the endocannabinoid system could be involved in attenuation of allergic response to contact allergens. In their experiments, double knockout mouse, without expression of CB<sub>1</sub>R and CB<sub>2</sub>R (CB<sub>1</sub>R<sup>-/-</sup>/CB<sub>2</sub>R<sup>-/-</sup>), stimulated by 2,4-dinitrofluorobenzen, an obligate contact allergen, developed significantly more severe ear dermatitis compared with wild-type mouse (87). Increased level of granulocytes and higher activity of myeloperoxidase, an indicative of enhanced neutrophil recruitment, were observed in knockout group compared with wild-type one. Moreover, knockout mouse demonstrated elevated number of MHC II antigen-positive cells in the inflamed area. Remarkably, 2,4-dinitrofluorobenzen treatment resulted in significant elevation of 2-AG and AEA levels in the skin. Interestingly, experiments with single deletion of either CB<sub>1</sub>R or CB<sub>2</sub>R revealed that both receptors are involved in the attenuation of contact allergic reaction (87). These results were confirmed by the use of CB1R and CB2R antagonists that induced increase in ear swelling in treated mouse compared with controls. Furthermore, a significantly decreased allergic response was observed in FAAH knockout mouse with retarded degradation of AEA (87). Finally, Karsak et al. (87) suggested that immunosuppressive effect of cannabinoid agonists in allergic inflammation may be related to monocyte chemotactic protein 2/chemokine (C-C motif) ligand 8 (MCP-2/CCL8), as in vitro experiments showed dynamic regulation of MCP-2/CCL8 production in activated keratinocytes through CBRs. Moreover, PEA has been demonstrated to down-modulate mast cell degranulation induced either by neurogenic (substance P) or immune-mediated stimuli, both in vitro and in vivo (88,89). Interestingly, it was also observed that substance P induced bronchoconstriction and airway oedema could be alleviated by CB<sub>2</sub>R activation (90). In addition, activation of peripheral CB<sub>2</sub>R decreased the spinal cord inflammation in animal model of multiple sclerosis (91,92). These observations carried out in different organs indirectly may support the idea that cannabinoids could also be important in the reduction of cutaneous inflammation.

However, the role of CB<sub>2</sub>R in the cutaneous inflammation remains controversial. Oka et al. (93) reported activation of CB<sub>2</sub>R during inflammation. Similarly to Karsak et al. (87), they found that the amount of 2-AG was markedly augmented in inflamed mouse ear, however, AEA level did not change markedly. Furthermore, treatment with a selective CB<sub>2</sub>R antagonist blocked the ear swelling as well as reduced production of leukotriene B4 and the infiltration of neutrophils in the mouse ear, whereas application of 2-AG to the mouse ear evoked swelling, the reaction that could be mediated by NO (93). In agreement with the study by Oka et al. (93), Ueda et al. (94) demonstrated that administration of JTE-907, an inverse CB2R antagonist, and SR144528, a CB<sub>2</sub>R antagonist, to DFNB treated mouse suppressed allergic inflammation. In another study, two selective CB<sub>2</sub>R antagonists, AM1241 and JWH133, were shown to reduce the secretagogue compound 48/80-evoked ear oedema in vivo (95). It was suggested that 2-AG may induce migration of eosinophils and macrophages through CB<sub>2</sub>R mechanism (94). Possibly, as supposed by Karsak

et al. (87),  $CB_2R$  antagonism may be initially beneficial but detrimental upon chronic blockade.

### Pruritus

Pruritus is considered as an unpleasant, localized or generalized sensation leading to intensive scratching or rubbing. Many patients consider itching as one of the most bothersome symptoms, sometimes even more unpleasant than pain. Pruritus is the most common symptom of different skin diseases, but may also accompany many systemic disorders. Although numerous antipruritic regimens exist, they frequently demonstrate limited efficacy and thus any new treatment option is warmly welcomed (96).

Recently published data suggested that cannabinoids, besides antinociceptive properties, may also exert antipruritic effect. Clinical and histological evaluation of PEA action in cats with eosinophilic granuloma demonstrated that after one month of treatment, 64% of all animals given PEA showed improvement of pruritus, erythema and alopecia, and 67% revealed improvement of extent and severity of the lesion (97). In addition, using an acute allergic mouse model, Schlosburg et al. (98) found that suppression of the neuronal FAAH reduces the scratching response through the inhibition of AEA degradation and activation of  $CB_1R$ .

Regarding humans, an open-labelled, non-controlled, prospective cohort study in a group of nearly 2500 subjects with atopic eczema demonstrated that a cream containing PEA significantly decreased objective and subjective symptoms of atopic eczema and was well tolerated (99). A complete resolution of pruritus was noted in 38.3% of individuals and significant improvement in further 41% of studied patients (99). Dvorak et al. (100) reported that CBR agonists significantly reduced histamine-evoked itch and vasodilatation by applying them topically before administration of histamine. In addition, co-administration of selective CB1R agonists with histamine markedly reduced the axon reflex flare response (100,101). Antipruritic efficacy of cannabinoids is also supported by the results of the pilot study on patients with uremic pruritus (102,103). In an open label fashion, it was observed that twice daily application of a cream containing AEA and PEA for 3 weeks resulted in complete elimination of this symptom in 38.1% patients and significant reduction of its intensity in further 52.4% (102,103). In another open application study on 22 patients with prurigo, lichen simplex or refractory pruritus applying an emollient cream containing PEA, 63.6% of subjects reported marked relief of itching (104). The average reduction of itch was 86.4%. The therapy was well tolerated by all patients; neither burning nor contact dermatitis was observed (104).

Although well planned, double blinded, placebocontrolled studies on the efficacy of endocannabinoids in the treatment of pruritus are still lacking, it seems that cannabinoids could be considered as potential therapeutic option for patients with pruritus who failed to other treatment modalities.

Thus, endocannabinoids seem to be promising agents for this symptom, although next, randomized, placebo-controlled studies are needed to confirm this advantageous effect.

### Pain

Endocannabinoids are also important for modulation of pain perception. Activation of peripheral CB<sub>1</sub>R attenuated dose-dependently existing hyperalgesia produced by a mild heat injury (105). In addition, selective activation of peripheral CB<sub>2</sub>R produced antiallodynic activity in a rodent model of post-incisional pain (106,107). Simultaneous activation of peripheral CB1R and CB2R resulted in a synergistic inhibition of peripheral pain transmission (1). It also seems that endocannabinoids interact with PPARa agonists to reduce acute pain behaviours in a synergistic manner (108). Thus, cannabinoids might be considered as potential analgesic drugs. However, conversely, Costa et al. (109) demonstrated that also CB<sub>1</sub>R antagonist may be of benefit when treating neuropathic pain, as this group showed that repeated oral administration of rimonabant (SR141716), a selective CB1R antagonist, attenuated both thermal and mechanical hyperalgesia in rats with chronic constriction injury of the sciatic nerve. This effect could be explained by the myelin repair and subsequent long-lasting functional nerve recovery induced by rimonabant (109).

Interestingly, in another study, Costa et al. (15) reported that anti-hyperalgesical effect of PEA in mouse is mediated independently by three types of receptors: CB<sub>1</sub>R, PPAR- $\gamma$ and TRPV-1 and inhibition of one of these receptors only partially decreased the anti-hyperalgesic effect of PEA. Accordingly, only a combination of antagonists to all three receptors was able to completely reverse the anti-hyperalgesic property of PEA (15).

Some authors suggested that instead of direct activation of CB<sub>1</sub>R by exogenous agonists, inhibition of FAAH is even more promising in pain treatment (110–113). It seems that disruption of FAAH function augments CB<sub>1</sub> signalling only in nervous system regions that are persistently stimulated, situation that is typically found in chronic pain. It is believed that inhibition of FAAH would result in analgesia without side effects accompanying typically activation of CB<sub>1</sub>R (110,114). In addition, it was shown that inhibition of monoacylglycerol lipase, an another enzyme responsible for degradation of endocannabinoids, may also produce analgesia (65).

### **Cutaneous malignancies**

Already in 1970s, exogenous cannabinoids were considered as potential anticancer drugs (115). Up to date there is an increasing knowledge about the anti-tumor effect of endocannabinoids, that may induce apoptosis, inhibit tumor cell proliferation and migration, diminish the expression of proangiogenic agents and their receptors, reduce vascular hyperplasia and modulate signal transduction in different cell lines (67,116). These effects were observed in gliomas, lymphomas, prostate, breast, lung and pancreatic cancers as well as in skin malignancies (7,117). The role of endocannabinoids in cancer therapy concentrates mainly on proapoptotic properties for cancer cells. There are many evidences that endocannabinoids may remodulate signal transduction in different tumors, and this could lead to increased synthesis of sphingolipids, ceramides, p8 protein and downstream of stress related genes (ATF-4, CHOP and TRB3), activation of Raf-1/MAP kinase and inhibition of Akt, c-Jun NH<sub>2</sub> terminal kinase and p38 MAP kinase. Inhibitory effect on tumor cells is most probably caused by inhibition of adenyl cyclase and the cAMP/PKA pathway, induction of the cyclin dependent kinase inhibitor p27kip1, decrease in epidermal growth factor receptor (EGF-R) expression or its kinase activity and decrease in activity and/or expression of nerve growth factor or vascular endothelial growth factor receptor 2 (7,116,117).

Melanoma still remains a management challenge. Many patients, especially with deeply infiltrating tumors, demonstrate poor prognosis despite the aggressive, anticancer treatment. Application of  $\Delta^9$ -THC and its analogue, nabilone, have been proposed by several authors (116,118–120) as additional therapy to prevent chemotherapy-induced nausea and vomiting, appetite stimulation and pain inhibition (115,121). Interestingly, recent observations also suggested that cannabinoids may be potent anti-tumor drugs.

Blazquez et al. (116) observed that melanoma cells of mouse and human origin expressed CB<sub>1</sub>R and CB<sub>2</sub>R. Furthermore, *in vitro* experiments on A353 and MelJuso melanoma cell lines demonstrated that cannabinoids significantly decreased the number of viable melanoma cells in cultures by inducing apoptosis, and selective antagonists for CB<sub>1</sub>R (SR141716) and CB<sub>2</sub>R (SR144528, AM630) prevented this effect. Interestingly, proliferation of normal melanocyte cell lines was not inhibited, although they also expressed CB<sub>1</sub>R (116). In addition, it was clearly documented that CB<sub>2</sub>R agonists inhibit melanoma progression and metastatic spreading in mouse (116).

Endocannabinoids may also be beneficial in non-melanoma skin cancers.  $CB_1R$  and  $CB_2R$  were shown to be expressed in benign (papillomas) and malignant skin tumor cells (squamous cell carcinoma) in mouse and humans (67). Remarkably, activation of CBRs in cell culture experiments induced apoptosis in tumorigenic epidermal cells, whereas the viability of normal epidermal cells remained unaffected (67). Furthermore, treatment with  $CB_1R/CB_2R$  (WIN-55,212-2) or selective  $CB_2R$  (JWH-133) agonists resulted in significant growth inhibition of malignant tumors (67). Cannabinoid-treated tumors showed an increased number of apoptotic cells and impaired vascularization (pattern of blood vessels characterized predominantly by narrow capillaries) as well as decreased expression of proangiogenic factors (vascular endothelial growth factor, placental growth factor and angiopoietin 2) (67). In addition, cannabinoid-treated tumors demonstrated abrogation of EGF-R function (67), an important component in the development of non-melanoma skin cancers triggering the angiogenic switch necessary for skin tumor growth (121,122).

On the other hand, the study by Zheng et al. (123) suggested that cannabinoids may also be involved in the early stages of malignant transformation. These authors observed that both CBRs, CB<sub>1</sub>R and CB<sub>2</sub>R, are activated by UVA and UVB, resulting in NF- $\kappa$ B activation and elevated level of TNF- $\alpha$  (120). These results might be connected with a rapid phosphorylation and internalization of both CBRs induced by UVB irradiation. It was also shown that the skin from CB<sub>1</sub><sup>-/-</sup>/CB<sub>2</sub><sup>-/-</sup> knockout mouse is resistant to UVB-evoked inflammation (123). Importantly, CB<sub>1</sub>R<sup>-/-</sup>/CB<sub>2</sub>R<sup>-/-</sup> mouse was also more resistant to UVB-induced papilloma development (123). Furthermore, papillomas found in wild-type mouse were more numerous and larger compared with those in CB<sub>1</sub>R<sup>-/-/</sup>/CB<sub>2</sub>R<sup>-/-</sup> mouse (123).

In another study (122), low doses of  $\Delta^9$ -THC were shown to improve the efficiency of Kaposi's sarcoma-associated herpes virus (KSHV, also named human herpes virus 8) to infect human dermal microvascular endothelial cells (HMVEC) *in vitro*, suggesting that cannabinoid system could be involved in spreading of some oncogenic viruses. This observation could be linked with the immunoinhibitory effect of endocannabinoids. It was observed that  $\Delta^9$ -THC induced KSHV replication in endothelial cells through up-regulation of *ORF50* expression, the major switch gene for KSHV from latency to the lytic cycle (122). Finally,  $\Delta^9$ -THC enhanced the adhesion between B lymphocytes and HMVEC by increasing the expression of PECAM-1. These findings may indicate that  $\Delta^9$ -THC can promote viral transmission (122).

### Conclusions

On the basis of the current knowledge, therapeutic possibilities of cannabinoid usage in skin diseases seem to be unquestionable. Possibly, in the future, cannabinoids will be widely applied to treat pruritus, inflammatory skin diseases and even skin cancers. However, our understanding of the role of cannabinoid system in the skin is still not completed, and next studies evaluating this exciting aspect of cutaneous biology are highly required. None to disclosure.

#### Founding sources

Conflict of interests

None.

#### References

- Onaivi E S, Leonard C M, Ishiguro H et al. Endocannabinoids and cannabinoid receptor genetics. Prog Neurobiol 2002: 66: 307–344.
- 2 Stander S, Schmelz M, Metze D et al. Distribution of cannabinoid receptor 1 (CB1) and 2 (CB2) on sensory nerve fibers and adnexal structures in human skin. J Dermatol Sci 2005: 38: 177–188.
- 3 Elphick M R, Egertova M. The neurobiology and evolution of cannabinoid signalling. Philos Trans R Soc Lond B Biol Sci 2001: 356: 381–408.
- 4 Elmes S J, Jhaveri M D, Smart D et al. Cannabinoid CB2 receptor activation inhibits mechanically evoked responses of wide dynamic range dorsal horn neurons in naive rats and in rat models of inflammatory and neuropathic pain. Eur J Neurosci 2004: 20: 2311–2320.
- 5 Freund T F, Katona I, Piomelli D. Role of endogenous cannabinoids in synaptic signaling. Physiol Rev 2003: 83: 1017–1066.
  6 Matsuda L A, Lolait S J, Brownstein M J *et al.* Structure of a cannabinoid
- 6 Matsuda L A, Lolait S J, Brownstein M J et al. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 1990: 346: 561–564.
- 7 Pacher P, Batkai S, Kunos G. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev 2006: 58: 389–462.
- Klein T W, Newton C, Larsen K et al. The cannabinoid system and immune modulation. J Leukoc Biol 2003: 74: 486–496.
- 9 Klein T W. Cannabinoid-based drugs as anti-inflammatory therapeutics. Nat Rev Immunol 2005: 5: 400–411.
- Nakamura A, Shiomi H. Recent advances in neuropharmacology of cutaneous nociceptors. Jpn J Pharmacol 1999: 79: 427–431.
- 11 Onaivi E S, Chakrabarti A, Chaudhuri G. Cannabinoid receptor genes. Prog Neurobiol 1996: 48: 275–305.
- 12 Breivogel C S, Griffin G, Di M V et al. Evidence for a new G protein-coupled cannabinoid receptor in mouse brain. Mol Pharmacol 2001: 60: 155– 163.
- 13 Brown A J. Novel cannabinoid receptors. Br J Pharmacol 2007: 152: 567– 575.
- 14 Ahluwalia J, Urban L, Bevan S, Nagy I. Anandamide regulates neuropeptide release from capsaicin-sensitive primary sensory neurons by activating both the cannabinoid 1 receptor and the vanilloid receptor 1 *in vitro*. Eur J Neurosci 2003: **17**: 2611–2618.
- 15 Costa B, Comelli F, Bettoni I *et al.* The endogenous fatty acid amide, palmitoylethanolamide, has anti-allodynic and anti-hyperalgesic effects in a murine model of neuropathic pain: involvement of CB<sub>1</sub>, TRPV1 and PPARy receptors and neurotrophic factors. Pain 2008: **139**: 541–550.
- 16 Hoehe M R, Caenazzo L, Martinez M M et al. Genetic and physical mapping of the human cannabinoid receptor gene to chromosome 6q14-q15. New Biol 1991: 3: 880–885.
- 17 Basavarajappa B S. Neuropharmacology of the endocannabinoid signaling system-molecular mechanisms, biological actions and synaptic plasticity. Curr Neuropharmacol 2007: 5: 81–97.
- 18 Fride É. The endocannabinoid-CB(1) receptor system in pre- and postnatal life. Eur J Pharmacol 2004: 500: 289–297.
- 19 Ameri A. The effects of cannabinoids on the brain. Prog Neurobiol 1999: 58: 315–348.
- 20 Herkenham M, Lynn A B, Johnson M R et al. Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 1991: 11: 563–583.
- 21 Lynn A B, Herkenham M. Localization of cannabinoid receptors and nonsaturable high-density cannabinoid binding sites in peripheral tissues of the rat: implications for receptor-mediated immune modulation by cannabinoids. J Pharmacol Exp Ther 1994: 268: 1612–1623.
- 22 Matsuda L A. Molecular aspects of cannabinoid receptors. Crit Rev Neurobiol 1997: 11: 143–166.
- 23 Shire D, Carillon C, Kaghad M et al. An amino-terminal variant of the central cannabinoid receptor resulting from alternative splicing. J Biol Chem 1995: 270: 3726–3731.
- **24** Boulais N, Misery L. The epidermis: a sensory tissue. Eur J Dermatol 2008: **18**: 119–127.
- 25 Komorowski J, Stepien H. The role of the endocannabinoid system in the regulation of endocrine function and in the control of energy balance in humans. Postepy Hig Med Dosw 2007: 61: 99–105.
- 26 Munro S, Thomas K L, bu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 1993: 365: 61–65.
- 27 Buckley N E, Burbridge D, Buranapramest M et al. Experimental methods to study the role of the peripheral cannabinoid receptor in immune function. Methods Mol Med 2006: 123: 19–40.

- 28 Ellert-Miklaszewska A, Grajkowska W, Gabrusiewicz K et al. Distinctive pattern of cannabinoid receptor type II (CB2) expression in adult and pediatric brain tumors. Brain Res 2007: 1137: 161–169.
- 29 Staton P C, Hatcher J P, Walker D J et al. The putative cannabinoid receptor GPR55 plays a role in mechanical hyperalgesia associated with inflammatory and neuropathic pain. Pain 2008: 139: 225–236.
- 30 Baker D, Pryce G, Davies W L et al. In silico patent searching reveals a new cannabinoid receptor. Trends Pharmacol Sci 2006: 27: 1–4.
- 31 Caterina M J, Schumacher M A, Tominaga M et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 1997: 389: 816– 824.
- De P L, Bisogno T, Maccarrone M *et al.* The activity of anandamide at vanilloid VR1 receptors requires facilitated transport across the cell membrane and is limited by intracellular metabolism. J Biol Chem 2001: 276: 12856–12863.
- 33 Movahed P, Evilevitch V, Andersson T L et al. Vascular effects of anandamide and N-acylvanillylamines in the human forearm and skin microcirculation. Br J Pharmacol 2005: 146: 171–179.
- **34** Veronesi B, Oortgiesen M. The TRPV1 receptor: target of toxicants and therapeutics. Toxicol Sci 2006: **89**: 1–3.
- 35 Patwardhan A M, Jeske N A, Price T J *et al.* The cannabinoid WIN 55,212-2 inhibits transient receptor potential vanilloid 1 (TRPV1) and evokes peripheral antihyperalgesia via calcineurin. Proc Natl Acad Sci U S A 2006: 103: 11393–11398.
- **36** Hogestatt E D, Zygmunt P M. Cardiovascular pharmacology of anandamide. Prostaglandins Leukot Essent Fatty Acids 2002: **66**: 343–351.
- 37 Taddei S. Evolving the concept of regulation of vascular tone in humans. Br J Pharmacol 2005: 146: 165–166.
- 38 Akerman S, Kaube H, Goadsby P J. Anandamide acts as a vasodilator of dural blood vessels in vivo by activating TRPV1 receptors. Br J Pharmacol 2004: 142: 1354–1360.
- 39 Kuenzli S, Saurat J H. Peroxisome proliferator-activated receptors as new molecular targets in psoriasis. Curr Drug Targets Inflamm Allergy 2004: 3: 205–211.
- 40 Sun Y, Bennett A. Cannabinoids: a new group of agonists of PPARs. PPAR Res 2007: 2007: 23513.
- **41** Sun Y, Alexander S P, Kendall D A *et al.* Cannabinoids and PPARalpha signalling. Biochem Soc Trans 2006: **34**: 1095–1097.
- 42 Bouaboula M, Hilairet S, Marchand J et al. Anandamide induced PPARgamma transcriptional activation and 3T3-L1 preadipocyte differentiation. Eur J Pharmacol 2005: 517: 174–181.
- 43 Glass M, van D A, Blakemore C et al. Delayed onset of Huntington's disease in mice in an enriched environment correlates with delayed loss of cannabinoid CB1 receptors. Neuroscience 2004: 123: 207–212.
- 44 Paus R, Schmelz M, Biro T *et al.* Frontiers in pruritus research: scratching the brain for more effective itch therapy. J Clin Invest 2006: **116**: 1174–1186.
- Childers S R, Deadwyler S A. Role of cyclic AMP in the actions of cannabinoid receptors. Biochem Pharmacol 1996; 52: 819–827.
   Gao, G K, Zhang, W, Kamiski N E. Cannabinoid recentor-mediated regulation
- 46 Rao G K, Zhang W, Kaminski N E. Cannabinoid receptor-mediated regulation of intracellular calcium by delta(9)-tetrahydrocannabinol in resting T cells. J Leukoc Biol 2004: 75: 884–892.
- 47 Kaplan B L, Springs A E, Kaminski N E. The profile of immune modulation by cannabidiol (CBD) involves deregulation of nuclear factor of activated T cells (NFAT). Biochem Pharmacol 2008: 76: 726–737.
- 48 Srivastava M D, Srivastava B I, Brouhard B. Delta9 tetrahydrocannabinol and cannabidiol alter cytokine production by human immune cells. Immunopharmacology 1998: 40: 179–185.
- 49 Gaoni Y, Mechoulam R. The isolation and structure of delta-1-tetrahydrocannabinol and other neutral cannabinoids from hashish. J Am Chem Soc 1971: 93: 217–224.
- 50 Devane W A, Hanus L, Breuer A et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 1992: 258: 1946– 1949.
- 51 Huang S M, Bisogno T, Trevisani M et al. An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc Natl Acad Sci U S A 2002: 99: 8400–8405.
- 52 Mechoulam R, Ben-Shabat S, Hanus L et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 1995: 50: 83–90.
- 53 Porter A C, Sauer J M, Knierman M D et al. Characterization of a novel endocannabinoid, virodhamine, with antagonist activity at the CB1 receptor. J Pharmacol Exp Ther 2002: 301: 1020–1024.
- 54 Sugiura T, Kondo S, Sukagawa A et al. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun 1995: 215: 89–97.
- 55 Maccarrone M, Bari M, Lorenzon T et al. Anandamide uptake by human endothelial cells and its regulation by nitric oxide. J Biol Chem 2000: 275: 13484– 13492.
- 56 Devane W A. New dawn of cannabinoid pharmacology. Trends Pharmacol Sci 1994; 15: 40–41.
   57 Devane W A. Dysarz F A III. Johnson M R et al. Determination and character-
- 57 Devane W A, Dysarz F A III, Johnson M R et al. Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol 1988: 34: 605– 613.
- 58 Natarajan V, Schmid P C, Reddy P V et al. Biosynthesis of N-acylethanolamine phospholipids by dog brain preparations. J Neurochem 1983: 41: 1303–12.

- 59 Natarajan V, Schmid P C, Reddy P V et al. Catabolism of N-acylethanolamine phospholipids by dog brain preparations. J Neurochem 1984: 42: 1613–9.
- 60 Maccarrone M, Rossi S, Bari M et al. Anandamide inhibits metabolism and physiological actions of 2-arachidonoylglycerol in the striatum. Nat Neurosci 2008: 11: 152–159.
- **61** Maccarrone M. Fatty Acid amide hydrolase: a potential target for next generation therapeutics. Curr Pharm Des 2006: **12**: 759–772.
- 62 Cravatt B F, Demarest K, Patricelli M P *et al.* Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc Natl Acad Sci U S A 2001: 98: 9371–9376.
- 63 Schlosburg J E, Kinsey S G, Lichtman A H. Targeting fatty acid amide hydrolase FAAH) to treat pain and inflammation. AAPS J 2009; 11: 39–44.
  64 Long J Z, Li W, Booker L *et al.* Selective blockade of 2-arachidonoylglycerol
- 64 Long J Z, Li W, Booker L *et al.* Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects. Nat Chem Biol 2009: 5: 37–44.
- 65 Singh T A, Santha P, Nagy I. Inflammatory mediators convert anandamide into a potent activator of the vanilloid type 1 transient receptor potential receptor in nociceptive primary sensory neurons. Neuroscience 2005: 136: 539–548.
- 66 Maccarrone M, Di R M, Battista N et al. The endocannabinoid system in human keratinocytes. Evidence that anandamide inhibits epidermal differentiation through CB1 receptor-dependent inhibition of protein kinase C, activation protein-1, and transglutaminase. J Biol Chem 2003: 278: 33896–33903.
- 67 Casanova M L, Blazquez C, Martinez-Palacio J et al. Inhibition of skin tumor growth and angiogenesis in vivo by activation of cannabinoid receptors. J Clin Invest 2003: 111: 43–50.
- 68 Paradisi A, Pasquariello N, Barcaroli D et al. Anandamide regulates keratinocyte differentiation by inducing DNA methylation in a CB1 receptor-dependent manner. J Biol Chem 2008: 283: 6005–6012.
- 69 Wilkinson J D, Williamson E M. Cannabinoids inhibit human keratinocyte proliferation through a non-CB1/CB2 mechanism and have a potential therapeutic value in the treatment of psoriasis. J Dermatol Sci 2007: 45: 87– 92.
- 70 Lau R J, Tubergen D G, Barr M Jr et al. Phytohemagglutinin-induced lymphocyte transformation in humans receiving delta9-tetrahydrocannabinol. Science 1976: 192: 805–807.
- 71 Galiegue S, Mary S, Marchand J et al. Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur J Biochem 1995: 232: 54–61.
- 72 Cabral G A, Dove Pettit D A. Drugs and immunity: cannabinoids and their role in decreased resistance to infectious disease. J Neuroimmunol 1998: 83: 116– 123.
- 73 Berdyshev E V, Schmid P C, Dong Z et al. Stress-induced generation of N-acylethanolamines in mouse epidermal JB6 P+ cells. Biochem J 2000: 346 (Pt 2): 369–374.
- 74 Salzet M, Breton C, Bisogno T et al. Comparative biology of the endocannabinoid system possible role in the immune response. Eur J Biochem 2000: 267: 4917–4927.
- 75 Tang J L, Lancz G, Specter S. Delta-9-tetrahydrocannabinol-(THC)-mediated inhibition of macrophage macromolecular metabolism is antagonized by human serum proteins and by cell surface proteins. Int J Immunopharmacol 1993: 15: 665–672.
- 76 Tang J L, Lancz G, Specter S et al. Marijuana and immunity: tetrahydrocannabinol-mediated inhibition of growth and phagocytic activity of the murine macrophage cell line, P388D1. Int J Immunopharmacol 1992: 14: 253–262.
- 77 Sipe J C, Arbour N, Gerber A et al. Reduced endocannabinoid immune modulation by a common cannabinoid 2 (CB2) receptor gene polymorphism: possible risk for autoimmune disorders. J Leukoc Biol 2005: 78: 231–238.
- 78 Berdyshev E V, Boichot E, Germain N et al. Influence of fatty acid ethanolamides and delta9-tetrahydrocannabinol on cytokine and arachidonate release by mononuclear cells. Eur J Pharmacol 1997: 330: 231–240.
- 79 Berdyshev E, Boichot E, Corbel M et al. Effects of cannabinoid receptor ligands on LPS-induced pulmonary inflammation in mice. Life Sci 1998: 63: L125– L129.
- 80 Kishimoto S, Muramatsu M, Gokoh M et al. Endogenous cannabinoid receptor ligand induces the migration of human natural killer cells. J Biochem 2005: 137: 217–223.
- 81 Costa B, Conti S, Giagnoni G et al. Therapeutic effect of the endogenous fatty acid amide, palmitoylethanolamide, in rat acute inflammation: inhibition of nitric oxide and cyclo-oxygenase systems. Br J Pharmacol 2002: 137: 413–420.
- 82 Lombard C, Nagarkatti M, Nagarkatti P. CB2 cannabinoid receptor agonist, JWH-015, triggers apoptosis in immune cells: potential role for CB2-selective ligands as immunosuppressive agents. Clin Immunol 2007: 122: 259–270.
- 83 Lombard C, Nagarkatti M, Nagarkatti P S. Targeting cannabinoid receptors to treat leukemia: role of cross-talk between extrinsic and intrinsic pathways in Delta9-tetrahydrocannabinol (THC)-induced apoptosis of Jurkat cells. Leuk Res 2005: 29: 915–922.
- 84 Lombard C, McKallip R J, Hylemon P B et al. Fas Ligand-dependent and -independent mechanisms of toxicity induced by T cell lymphomas in lymphoid organs and in the liver. Clin Immunol 2003: 109: 144–153.
- 85 Ouyang Y, Hwang S G, Han S H et al. Suppression of interleukin-2 by the putative endogenous cannabinoid 2-arachidonyl-glycerol is mediated through down-regulation of the nuclear factor of activated T cells. Mol Pharmacol 1998: 53: 676–683.

- 86 Namazi M R. Cannabinoids, loratadine and allopurinol as novel additions to the antipsoriatic ammunition. J Eur Acad Dermatol Venereol 2005: 19: 319– 322.
- 87 Karsak M, Gaffal E, Date R et al. Attenuation of allergic contact dermatitis through the endocannabinoid system. Science 2007: 316: 1494–1497.
- 88 Facci L, Dal T R, Romanello S *et al.* Mast cells express a peripheral cannabinoid receptor with differential sensitivity to anandamide and palmitoylethanolamide. Proc Natl Acad Sci U S A 1995: 92: 3376–3380.
- 89 Mazzari S, Canella R, Petrelli L et al. N-(2-hydroxyethyl)hexadecanamide is orally active in reducing edema formation and inflammatory hyperalgesia by down-modulating mast cell activation. Eur J Pharmacol 1996: 300: 227–236.
  90 Cui Y Y, D'Agostino B, Risse P A et al. Cannabinoid CB(2) receptor activation
- 90 Cui Y Y, D'Agostino B, Risse P A et al. Cannabinoid CB(2) receptor activation prevents bronchoconstriction and airway oedema in a model of gastrooesophageal reflux. Eur J Pharmacol 2007: 573: 206–213.
- 91 Palazuelos J, Davoust N, Julien B et al. The CB(2) cannabinoid receptor controls myeloid progenitor trafficking: involvement in the pathogenesis of an animal model of multiple sclerosis. J Biol Chem 2008: 283: 13320–13329.
- 92 Baker D, Jackson S J, Pryce G. Cannabinoid control of neuroinflammation related to multiple sclerosis. Br J Pharmacol 2007: 152: 649–654.
- 93 Oka S, Yanagimoto S, Ikeda S et al. Evidence for the involvement of the cannabinoid CB2 receptor and its endogenous ligand 2-arachidonoylglycerol in 12-O-tetradecanoylphorbol-13-acetate-induced acute inflammation in mouse ear. J Biol Chem 2005: 280: 18488–18497.
- 94 Ueda Y, Miyagawa N, Matsui T et al. Involvement of cannabinoid CB(2) receptor-mediated response and efficacy of cannabinoid CB(2) receptor inverse agonist, JTE-907, in cutaneous inflammation in mice. Eur J Pharmacol 2005: 520: 164–171.
- 95 Jonsson K O, Persson E, Fowler C J. The cannabinoid CB2 receptor selective agonist JWH133 reduces mast cell oedema in response to compound 48/80 in vivo but not the release of beta-hexosaminidase from skin slices in vitro. Life Sci 2006: 78: 598–606.
- 96 Ständer S, Weisshaar E, Luger T A. Neurophysiological and neurochemical basis of modern pruritus treatment. Exp Dermatol 2008: 17: 161–169.
- 97 Scarampella F, Abramo F, Noli C. Clinical and histological evaluation of an analogue of palmitoylethanolamide, PLR 120 (comicronized Palmidrol INN) in cats with eosinophilic granuloma and eosinophilic plaque: a pilot study. Vet Dermatol 2001: 12: 29–39.
- 98 Schlosburg J E, Boger D L, Cravatt B F, Lichtman A H. Endocannabinoid modulation of scratching response in an acute allergenic model: a ew prospective neural therapeutic target for pruritus. J Pharmacol Exp Ther 2009: **329**: 314– 23.
- 99 Eberlein B, Eicke C, Reinhardt H W et al. Adjuvant treatment of atopic eczema: assessment of an emollient containing N-palmitoylethanolamine (AT-OPA study). J Eur Acad Dermatol Venereol 2008: 22: 73–82.
- 100 Dvorak M, Watkinson A, McGlone F et al. Histamine induced responses are attenuated by a cannabinoid receptor agonist in human skin. Inflamm Res 2003: 52: 238–245.
- **101** Rukwied R, Watkinson A, McGlone F *et al.* Cannabinoid agonists attenuate capsaicin-induced responses in human skin. Pain 2003: **102**: 283–288.
- 102 Szepietowski J C, Szepietowski T, Reich A. Efficacy and tolerance of the cream containing structured physiological lipids with endocannabinoids in the treatment of uremic pruritus: a preliminary study. Acta Dermatovenerol Croat 2005: 13: 97–103.
- 103 Szepietowski J C, Reich A, Szepietowski T. Emollients with endocannabinoids in the treatment of uremic pruritus: discussion of the therapeutic options. Ther Apher Dial 2005: 9: 277–279.

- 104 Stander S, Reinhardt H W, Luger T A. Topical cannabinoid agonists. An effective new possibility for treating chronic pruritus. Hautarzt 2006: 57: 801– 807.
- **105** Johanek L M, Simone D A. Activation of peripheral cannabinoid receptors attenuates cutaneous hyperalgesia produced by a heat injury. Pain 2004: **109**: 432–442.
- 106 LaBuda C J, Koblish M, Little P J. Cannabinoid CB2 receptor agonist activity in the hindpaw incision model of postoperative pain. Eur J Pharmacol 2005: 527: 172–174.
- 107 Jaggar S I, Hasnie F S, Sellaturay S et al. The anti-hyperalgesic actions of the cannabinoid anandamide and the putative CB2 receptor agonist palmitoylethanolamide in visceral and somatic inflammatory pain. Pain 1998: 76: 189– 199.
- 108 Russo R, LoVerme J, La R G et al. Synergistic antinociception by the cannabinoid receptor agonist anandamide and the PPAR-alpha receptor agonist GW7647. Eur J Pharmacol 2007: 566: 117–119.
- 109 Costa B, Trovato A E, Colleoni M et al. Effect of the cannabinoid CB1 receptor antagonist, SR141716, on nociceptive response and nerve demyelination in rodents with chronic constriction injury of the sciatic nerve. Pain 2005: 116: 52–61.
- 110 Cravatt B F, Lichtman A H. Fatty acid amide hydrolase: an emerging therapeutic target in the endocannabinoid system. Curr Opin Chem Biol 2003: 7: 469– 475.
- 111 Sagar D R, Kendall D A, Chapman V. Inhibition of fatty acid amide hydrolase produces PPAR-alpha-mediated analgesia in a rat model of inflammatory pain. Br J Pharmacol 2008: 155: 1297–1306.
- 112 Karanian D A, Brown Q B, Makriyannis A et al. Dual modulation of endocannabinoid transport and fatty acid amide hydrolase protects against excitotoxicity. J Neurosci 2005: 25: 7813–7820.
- 113 Jhaveri M D, Richardson D, Chapman V. Endocannabinoid metabolism and uptake: novel targets for neuropathic andinflammatory pain. Br J Pharmacol 2007: 152: 624–632.
- 114 Lichtman A H, Leung D, Shelton C C et al. Reversible inhibitors of fatty acid amide hydrolase that promote analgesia: evidence for an unprecedented combination of potency and selectivity. J Pharmacol Exp Ther 2004: 311: 441– 448.
- 115 Munson A E, Harris L S, Friedman M A et al. Antineoplastic activity of cannabinoids. J Natl Cancer Inst 1975: 55: 597–602.
- 116 Blazquez C, Carracedo A, Barrado L et al. Cannabinoid receptors as novel targets for the treatment of melanoma. FASEB J 2006: 20: 2633–2635.
- 117 Sarfaraz S, Adhami V M, Syed D N *et al.* Cannabinoids for cancer treatment: progress and promise. Cancer Res 2008: **68**: 339–342.
- 118 Thompson J F, Scolyer R A, Kefford R F. Cutaneous melanoma. Lancet 2005: 365: 687–701.
- 119 Tsao H, Atkins M B, Sober A J. Management of cutaneous melanoma. N Engl J Med 2004: 351: 998–1012.
- 120 Chudnovsky Y, Khavari P A, Adams A E. Melanoma genetics and the development of rational therapeutics. J Clin Invest 2005: 115: 813–824.
- 121 Bifulco M, Di M V. Targeting the endocannabinoid system in cancer therapy: a call for further research. Nat Med 2002: 8: 547–550.
- 122 Zhang X, Wang J F, Kunos G et al. Cannabinoid modulation of Kaposi's sarcoma-associated herpesvirus infection and transformation. Cancer Res 2007: 67: 7230–7237.
- 123 Zheng D, Bode A M, Zhao Q et al. The cannabinoid receptors are required for ultraviolet-induced inflammation and skin cancer development. Cancer Res 2008: 68: 3992–3998.